
Poolshark Whitepaper v1.0.0
Page 1

Poolshark
alphak3y

Abstract
Poolshark is a noncustodial directional automated market maker implemented for the Ethereum Virtual Machine.
In comparison to its predecessors, it allows liquidity providers to adopt a buy-and-hold strategy using a closed-
form solution for liquidity position tracking.

Keywords
Directional Automated Market Maker — Directional Liquidity — Cover Liquidity — Price Liquidity

*Corresponding author: alphak3y@protonmail.com January 10th, 2023

Contents

Introduction 1

Motivation 1

1 High-level overview 2
1.1 Cover Liquidity Pools . . . . . . . . . . . . . . . . . . . . 2
1.2 Price Liquidity Pools . . . . . . . . . . . . . . . . . . . . . 3

2 Implementation Details 3
2.1 Cover Pool Contracts . . . . . . . . . . . . . . . . . . . . 3

Position Updates • Liquidity Auctions • Price Tracking

2.2 Price Pool Contracts . . . . . . . . . . . . . . . . . . . . 4

Acknowledgments 4

References 4

Introduction
Automated market makers (AMMs) are defined as

software that prices liquidity using a pre-defined algorithm.
In the context of decentralized finance, x∗ y = k is often asso-
ciated with constant-function market makers (CFMMs). This
pricing mechanism is commonplace due to its well-defined
blockspace usage. For a pool in which two tokens are paired
with one another, the formula maintains that the total value of
the first token in the pool must always equal the total value of
the second token.

Directional automated market makers (DAMMs) are
an extension of automated market makers wherein liquidity in
the pool is non–recyclable and discrete liquidity curves exist
for each trading direction.

Motivation
Bidirectional liquidity here is defined as a smart con-

tract allowing liquidity to be traded from either

token0 => token1 ∨ token1 => token0

This mechanism is commonly associated with the term AMM
as of this writing. The way that such a smart contract trades

assets using x∗ y = k math is based both on market demand
as well as supply from liquidity providers. Here a mean-
reversion trading strategy is applied, meaning we assume in
providing liquidity there is some stable trend.

Within bidirectional liquidity, traders execute liquidity
swaps and set the pool price by shifting the pool reserves. It
is worth noting the value of this smart contract design is to
enable continuous liquidity on-chain and collect trading fees
for doing so.

This style of AMM can become unfavorable as price
divergence between pool assets increases. This is due to the
reduced liquid market value of the deposited assets, with the
liquidity provider taking the losing side when there is a large
directional move. This phenomenon is commonly referred
to as impermanent loss, however for sake of simplicity, it is
easier to define this impermanent loss as

ASPmarket −ASPLP posit ion

where the ASP (i.e. average selling price) difference between
the liquid market value and the ASP of the LP (i.e. liquidity
provider) position at some constant price.

If we take 1 ETH and spread it across the price range
of 3000 DAI per ETH to 5000 DAI per ETH using range-
bound liquidity and x ∗ y = k, that 1 ETH will be sold at
approximately 3868.23 DAI per ETH.

When the market price of ETH becomes 5000 DAI per
ETH, a user with range-bound liquidity between 3000 DAI
per ETH and 5000 DAI per ETH will experience a value loss
of 1131.77 DAI. Here we assume the user to liquidate these
holdings to 100% DAI at the price of 5000 DAI per ETH with
zero price slippage.

To cover these losses, we highlight here a few key options
for the liquidity provider:

1) Choose to not provide bidirectional liquidity and favor
a buy-and-hold strategy



Poolshark — 2/4

2) Buy-and-hold an option, perpetual, or another deriva-
tive with the likelihood of liquidity issues when liqui-
dating

3) Buy-and-hold the underlying asset in the bidirectional
liquidity pool which the LP expects to appreciate over
time

1), 2), and 3) in the current context of decentralized ex-
changes involve diminishing liquidity available for assets such
as WETH, DAI, and other fungible tokens in favor of improv-
ing individual portfolio outcomes.

Having a way to express 3) by providing range-bound liq-
uidity to a smart contract means A) liquidity can be provided
by both traders and fee collectors B) bidirectional liquidity
providers require less active management to become delta
neutral C) more price diversity in the market with discrete
liquidity curves for each trading direction.

This is the clear motivation for the introduction and exis-
tence of directional automated market makers (DAMMs): to
support the needs of on-chain liquidity seeking a gas-efficient
buy-and-hold strategy across various market conditions.

1. High-level overview
Directional liquidity AMMs, defined as a smart con-

tract allowing for liquidity to be exclusively traded between

token0 => token1 ⊕ token1 => token0

Directional automated market makers have two key traits:

1) Irreversible liquidity swaps

2) Discrete liquidity curves

The Poolshark Protocol delivers these qualities with two
definitive variants, Cover Pools and Price Pools.

Cover Pools enable the liquidity provider to unlock liquid-
ity as the price moves against the asset which they provided
to the liquidity pool.

Price Pools allow for pro-rata price priority, where users
executing liquidity swaps receive the lowest price for their
chosen trading direction.

Cover Example :

Alice provides DAI in a range of 3000 to 5000 DAI per ETH
to offset the potential impermanent loss.

Price Example :

Bob provides ETH at a 0.01% discount to the rest of the market
to exit his ETH position.

1.1 Cover Liquidity Pools
To cover this loss of 1131.77 DAI as mentioned in the

Motivation section, the solution proposed in this whitepaper
is to purchase the same amount of ETH back from the market
that was sold over this range at the same average price of
3868.23 DAI per ETH.

For each bit of ETH that the liquidity provider receives
from the market, they ought to hold this ETH to profit from a
continual directional increase in price (i.e. impermanent gain).
From this point on we shall refer to this description as a Cover
Pool.

Cover Pools gradually unlock liquidity as the price
continues to move against the asset the LP provided. In the
case here, the user provides 3868.23 DAI to create a Cover
LP Position with a lower bound of 3000 DAI per ETH and an
upper bound of 5000 DAI per ETH. As the price continues to
increase from ETH to DAI and decrease for DAI to ETH, the
smart contract will unlock more of the user’s LP position to
be auctioned off to the market.

The smart contract requires a reference price to deter-
mine which liquidity should be unlocked at any given time.
One way to inform this reference price is via a time-weighted
average price (TWAP) oracle. This oracle’s data will ideally
originate on-chain to maximize the trustlessness of the pro-
tocol. A longer TWAP sample (e.g. last 1 hour) will make
the Cover Pool less reactive to changes in price. Conversely,
a shorter TWAP sample (e.g. last 10 minutes) will make the
Cover Pool more reactive to price changes but better able to
handle short-term volatility.

In addition to creating a positive spread on the latest
TWAP price, the Cover Pool will also need to dynamically
adjust to the current market price, which is likely plus or minus
the current TWAP sample. To account for this adjustment,
Cover Pools will implement the concept of Gradual Dutch
Auctions to adjust the pool price each consecutive block.

Figure 1. Cover auction price curve

Each time the TWAP moves, a liquidity auction will
initiate and create a positive spread against the TWAP sample
equal to the tickSpacing. For example, if the ETH-DAI Cover
Pool in our example has sourced a TWAP 0.1% (10 basis

https://docs.poolsharks.io/introduction/cover-pools/
https://www.paradigm.xyz/2022/04/gda
https://www.paradigm.xyz/2022/04/gda


Poolshark — 3/4

points) above 3000 DAI per ETH the ETH to DAI price will
start at 3000 + 0.2% and the DAI to ETH price will start at
3000 DAI per ETH. This is done to get slightly ahead of
the current market price so the pool can ensure those with
a liquidity position in the pool get filled. To be clear, this
positive TWAP spread does not alter the price at which the
Cover LP Position gets filled but rather slightly speeds up the
liquidity unlocking to increase the likelihood of user liquidity
getting filled.

When liquidity is unlocked by the TWAP, it is unlikely
this TWAP will fit the natural market price without any adjust-
ment. To account for this delta, Cover Pools will implement
the concept of Gradual Dutch Auctions to increase or de-
crease the pool price as needed each consecutive block a tick
or set of ticks has its liquidity auctioned off.

1.2 Price Liquidity Pools
In the current bidirectional range AMMs as of writ-

ing, when the LP position has reached the desired price, it
needs to be withdrawn. This is a drastic departure from how
traditional limit orders work on centralized exchanges. Price
Pools provide a closed-form solution for mirroring one-way
fills: a Claim Tick.

The concept of a claim tick is such that there is some
price tick T up to which our position has been filled since the
time of creation. As the pool crosses each tick and fills the
user’s Position P, it will mark the global total fee growth at
which the tick was crossed.

Since there exist discrete curves for each trading direc-
tion, the smart contract can retrieve the lowest price for each
trading direction. As a result, users executing liquidity swaps
will receive the best price available in the smart contract. Liq-
uidity providers receive the benefit of irreversible ”take-profit”
range orders that can be used for a variety of scenarios.

2. Implementation Details

Directional liquidity relies on a time-keeping mech-
anism to tell liquidity providers the Tick closest to fill com-
pletion, which we will refer to as the Claim Tick, which will
contain any other data needed to fulfill a user receiving the col-
lected assets thus far and/or removing their liquidity from the
smart contract. Given the Claim Tick is known and verified
as correct (i.e. it has seen some update since the user created
their Position), x ∗ y = k math can be used to determine the
amount a Position should receive of both token0 and token1.

This simple mechanism of liquidity position tracking
persists throughout, however, there are a variety of special
cases to handle. Where the pool price is at the time of mint,
collect, or burn will mean a different approach to updating
liquidity values at Ticklower and Tickupper for the Position. It is
important to note that Cover Pools and Price Pools have com-
pletely separate mechanics outside of the similarities outlined
in this section.

2.1 Cover Pool Contracts
When first launching a Cover Pool, we must first

ensure that the Range Pool we are referencing has a suffi-
cient TWAP sample length for any user minting a Cover LP
Position. If our pool uses a TWAP sample length of 1 hour, we
must ensure there is 1 hour’s worth of data currently available.

Once this check passes, we can initialize the pool
and allow users to start adding liquidity. By initializing the
pool, Tickmin and Tickmax, the minimum and maximum rep-
resentable price ticks, are created in addition to a Ticklatest , a
Tick representing the current TWAP sample.

To prevent the state of any liquidity position from
being fragmented, we must not allow users to add liquidity on
both sides of the current TWAP. For LPs seeking to provide
token1 in exchange for token0, they must provide liquidity
at a price greater than the current TWAP, assuming the pool
price is represented as

pricepool =
token1 reserves
token0 reserves

Likewise, LPs seeking to provide token1 in exchange for
token0 must provide liquidity at a price lesser than the current
TWAP. Users seeking to exchange at a more favorable price
than the current TWAP should instead use a Price LP Position,
which is meant to play the role of a take-profit range order.

Having discrete liquidity curves means having sep-
arate liquidity data for each swap direction. We will refer
to this distinction as pool0 and pool1, for which pool0 will
contain token0 and pool1 will contain token1. Position and
Tick data will also have distinct contract storage to track the
activity of each pool and apply exactly-once liquidity position
fills.

2.1.1 Position Updates
Upon minting an LP position in a Cover Pool, a +∆liquidity,

or positive liquidityDelta, is added to Tickstart , while con-
versely a −∆liquidity is added to the Tickend Tick. If the LP
mints a position for token1 to token0, the Tickstart will be at
the lower bound, and the Tickend will be at the upper bound.
Vice versa will be true if the LP is depositing token0 for
token1.

Utilizing standard x∗ y = k math and virtual reserves,
we can calculate the amount of liquidity L that a Position
holds using the following formula[1]:

L =

√
(x+

L
priceupper

)(y+L
√

pricelower)

where pricelower is strictly less than priceupper and L represents
the square root of k in the equation x∗ y = k.

If there isn’t already a Position that exists for a user
with a chosen Ticklower and Tickupper, liquidity will be added
to the respective ticks and the Position will have two values
initialized, accumulateE pochLast and claimPriceLast. The
former tells us at what accumulateE poch the position was

https://www.paradigm.xyz/2022/04/gda


Poolshark — 4/4

last updated, while claimPriceLast tells us up to what price
the user has claimed their expected Position token output.

If a Position already exists for a user with a chosen
Ticklower and Tickupper, the current Position must be updated
first before we can create the new Position. This is imple-
mented so the Position can be partially filled and then have
more liquidity deposited thereafter. Once the Position is up-
dated, it will be stored with a Ticklower representing what
remains if token1 was initially deposited into the Positon, or
Tickupper if token0 was initially deposited into the Position.

2.1.2 Liquidity Auctions
For a single constant Tick T , it is unlikely the current

TWAP will fully inform the pool of what is a competitive
market price. There is a possibility that the market price of
another liquidity pool, bidirectional or directional, will be
superior for the trader at any given point in time without some
adjustment. To remedy this, the concept of a Gradual Dutch
Auction is implemented to naturally fit the Cover Pool price
to that of other liquidity pools.

Either a Continuous GDA or a Discrete GDA could be
implemented depending on which mechanism is more suitable
for a given case. Continuous GDAs would not make all the
liquidity available immediately to the market across a single
Tick. Discrete GDAs, while ostensibly longer to carry out the
auction, would split the liquidity across a single Tick or set
of Ticks into multiple auctions. Using either method, there is
some decay constant λ which will be used to determine the
starting price of the liquidity for each consecutive block. If
there is any ∆ from the expected output amount for the LP,
we use the value amountIn∆ to track this difference on a per
liquidity unit basis.

2.1.3 Price Tracking
Price is tracked using a time-weighted average price

oracle of some sample length determined by the user launch-
ing the pool. Each time the TWAP moves by the amount
tickSpacing, we must initiate the process of what is referred
to as ”accumulation”. Effectively what this process will do
is update the accumulateE poch value on each Tick passed
between the old TWAP and the new TWAP, informing all
Positions seeking to claim that each of these ticks has been
crossed since the user minted their position. Knowing that a
tick was crossed allows the protocol to use simple x ∗ y = k
math to determine how much each of token0 and token0
the Position is owed, checking claimPriceLast to determine
which part of a given Position has been filled and/or claimed
and which has not.

If for some reason there is a Tick which is left either
partially or completely unfilled (i.e. the TWAP moved be-
fore the market was able to fill the user), we will leverage
amountIn∆ and amountOut∆ to inform the Position on a per
liquidity unit basis how much was left unfilled. amountIn
here represents the desired output token for the Position while
amountOut represents the token the LP deposited. The ”accu-
mulation” process will propagate these ∆ values across ticks

until a Tick is crossed which removes all current liquidity in
the pool.

After the ”accumulation” process is carried out and all
Tick contract storage is updated, a new Tick will be initialized
for the new TWAP price and will be linked to the two nearest
ticks. The price for pool1 will start at a positive spread of
tickSpacing in favor of the trader, while the price for pool0
will do the same based on the new TWAP. This allows the
liquidity unlock for each pool to get slightly ahead of the
TWAP and thus increase the chances of successfully filling
the entire range of the current liquidity auction.

2.2 Price Pool Contracts
[Coming in v1.0.1]

Acknowledgments
Major thanks to all the wonderful people I have met at each
and every Ethereum conference. Without your inspiration
and dedication to the space, this wouldn’t have been possible.
Together we can build a brighter future.

Big thanks to 0xnexusflip for being a constant sounding
board and equal thanks to everyone on my team who believed
in me.

References
[1] Hayden Adams, Noah Zinsmeister, Moody Salem, River

Keefer, and Dan Robinson. 2021. Uniswap v3 Core. Re-
trieved Jan 10, 2023, from https://uniswap.org/whitepaper-
v3.pdf

[2] Frankie, Dan Robinson, Dave White, and andy8052. 2022.
Gradual Dutch Auctions. Retrieved Jan 10, 2023, from
https://www.paradigm.xyz/2022/04/gda


	Introduction
	Motivation
	High-level overview
	Cover Liquidity Pools
	Price Liquidity Pools

	Implementation Details
	Cover Pool Contracts
	Position Updates
	Liquidity Auctions
	Price Tracking

	Price Pool Contracts

	Acknowledgments
	References

