
Poolshark Whitepaper v1.0.1
Page 1

Poolshark
alphak3y

Abstract
Poolshark is a noncustodial directional automated market maker implemented for the Ethereum Virtual Machine.
In comparison to its predecessors, it allows liquidity providers to adopt directional strategies using a closed-form
solution for liquidity position tracking.

Keywords
Directional Automated Market Maker — Directional Liquidity — Cover Liquidity — Limit Liquidity

*Corresponding author: alphak3y@protonmail.com January 10th, 2023

Contents

Introduction 1

Motivation 1

1 High-level overview 2

1.1 Limit Pools . 2
1.2 Cover Pools . 2

2 Implementation Details 3

2.1 Limit Pool Contracts . 3
2.2 Cover Pool Contracts . 3

Position Updates • Tick Auctions • Price Tracking • Delta Math

Acknowledgments 5

References 5

Introduction
Automated market makers (AMMs) are defined as

software that prices liquidity using a pre-defined algorithm.
In the context of decentralized finance, x∗ y = k is often asso-
ciated with constant-function market makers (CFMMs). This
pricing mechanism is commonplace due to its well-defined
blockspace usage. For a pool in which two tokens are paired
with one another, the formula maintains that the total value of
the first token in the pool must always equal the total value of
the second token. In order to provide efficient liquidity swap-
ping and stable transaction costs, tokens provided to an AMM
use a strategy called merging to form all liquidity provider
positions into a single liquidity pool.

With the introduction of range-bound liquidity[1],
liquidity providers could define a custom price range over
which their liquidity will trade while still being efficiently
aggregated inside a liquidity pool. This results in increased
capital efficiency for liquidity providers with the trade-off of
making more liquidity available near market price.

Directional automated market makers (DAMMs) are
an extension of automated market makers wherein liquidity
in the pool is non–recyclable and discrete liquidity curves

exist for each trading direction. The intention of using such
an AMM is to shift focus from liquidity providers capturing
fees to liquidity providers capturing volatility. The former has
been proven to work on stable pairs and produce consistent
revenue while the latter is inherently useful when price action
for a pair is non-stable.

Directional automated market makers in short only
capture one side of a pair over some bound range, allowing
them to fill more similarly to a limit order than predeces-
sor AMMs. As of current, AMMs in decentralized finance
have only offered buy-and-sell liquidity positions, whereas
Poolshark provides buy-only and sell-only liquidity positions.

Motivation
Bidirectional liquidity here is defined as a smart con-

tract allowing liquidity to be traded from either

token0 => token1 ∨ token1 => token0

This mechanism is commonly associated with the term AMM
as of this writing. The way that such a smart contract trades
assets using x∗ y = k math is based both on market demand
as well as supply from liquidity providers. Here a mean-
reversion trading strategy is applied, meaning we assume there
is some stable trend over the timeframe in which liquidity is
provided.

Within bidirectional liquidity, traders execute liquidity
swaps and set the pool price by shifting the pool reserves. It
is worth noting the value of this smart contract design is to
enable continuous liquidity on-chain and collect trading fees
for doing so.

This style of AMM can become unfavorable as price
divergence between pool assets increases. This is due to the
reduced liquid market value of the deposited assets, with the
liquidity provider taking the losing side when there is a large
directional move. This phenomenon is commonly referred
to as impermanent loss, however for sake of simplicity, it is
easier to define this impermanent loss as

ASPmarket −ASPLP posit ion

Poolshark — 2/5

where the ASP (i.e. average selling price) difference between
the liquid market value and the ASP of the LP (i.e. liquidity
provider) position at some constant price.

If we take 1 ETH and spread it across the price range
of 3000 DAI per ETH to 5000 DAI per ETH using range-
bound liquidity and x ∗ y = k, that 1 ETH will be sold at
approximately 3868.23 DAI per ETH.

When the market price of ETH becomes 5000 DAI per
ETH, a user with range-bound liquidity between 3000 DAI
per ETH and 5000 DAI per ETH will experience a value loss
of 1131.77 DAI. Here we assume the user to liquidate these
holdings to 100% DAI at the price of 5000 DAI per ETH with
zero price slippage.

To cover these losses, we highlight here a few key options
for the liquidity provider:

1) Choose to not provide bidirectional liquidity and favor
a buy-and-hold strategy

2) Buy-and-hold an option, perpetual, or other derivatives
which are inherently less liquid than naked assets

3) Buy-and-hold the underlying asset in the bidirectional
liquidity pool which the LP expects to appreciate over
time

1), 2), and 3) in the current context of decentralized ex-
changes involve diminishing liquidity available for assets such
as WETH, DAI, and other fungible tokens in favor of improv-
ing individual portfolio outcomes.

Having a way to express 3) by providing range-bound liq-
uidity to a smart contract means A) liquidity can be provided
by both traders and fee collectors B) bidirectional liquidity
providers require less active management to become delta
neutral C) more price diversity in the market with discrete
liquidity curves for each trading direction.

This is the clear motivation for the introduction and exis-
tence of directional automated market makers (DAMMs): to
support the needs of on-chain liquidity seeking a gas-efficient
buy-and-hold strategy across various market conditions.

1. High-level overview
Directional liquidity AMMs, defined as a smart con-

tract allowing for liquidity to be exclusively traded between

token0 => token1 ⊕ token1 => token0

Directional automated market makers have two key traits:

1) Irreversible liquidity swaps

2) Discrete liquidity curves

The Poolshark Protocol delivers these qualities with two
definitive variants, Cover Pools and Limit Pools.

Limit Pools allow for price priority, where liquidity providers
can undercut the market on one side and traders receive the
lowest price possible.

Cover Pools enable the liquidity provider to unlock liquid-
ity as the price moves against the asset which they provided
to the liquidity pool.

Limit Example :

Bob provides ETH at a 0.01% discount to the rest of the market
to exit his ETH position.

Cover Example :

Alice provides DAI in a range of 3000 to 5000 DAI per ETH
to offset the potential impermanent loss.

1.1 Limit Pools
In the current bidirectional range AMMs as of writ-

ing, when the LP position has reached the desired price, it
needs to be withdrawn. This is a drastic departure from how
traditional limit orders work on centralized exchanges. Limit
Pools provide a closed-form solution for mirroring one-way
fills: a Claim Tick.

The concept of a claim tick is such that there is some
price tick T up to which our position has been filled since the
time of creation. As the pool crosses each tick and fills the
user’s Position P, it will mark the global total fee growth at
which the tick was crossed.

Since there exist discrete curves for each trading direc-
tion, the smart contract can retrieve the lowest price for each
trading direction. As a result, users executing liquidity swaps
will receive the best price available in the smart contract. Liq-
uidity providers receive the benefit of irreversible ”take-profit”
range orders that can be used for a variety of scenarios.

1.2 Cover Pools
To cover this loss of 1131.77 DAI as mentioned in the

Motivation section, the solution proposed in this whitepaper
is to purchase the same amount of ETH back from the market
that was sold over this range at the same average price of
3868.23 DAI per ETH.

For each bit of ETH that the liquidity provider receives
from the market, they ought to hold this ETH to profit from a
continual directional increase in price (i.e. impermanent gain).
From this point on we shall refer to this description as a Cover
Pool.

Cover Pools gradually unlock liquidity as the price
continues to move against the asset the LP provided. In the
case here, the user provides 3868.23 DAI to create a Cover
LP Position with a lower bound of 3000 DAI per ETH and an
upper bound of 5000 DAI per ETH. As the price continues to
increase from ETH to DAI and decrease for DAI to ETH, the
smart contract will unlock more of the user’s LP position to
be auctioned off to the market.

https://docs.poolsharks.io/introduction/cover-pools/

Poolshark — 3/5

The smart contract requires a reference price to deter-
mine which liquidity should be unlocked at any given time.
One way to inform this reference price is via a time-weighted
average price (TWAP) oracle. Oracle data will ideally origi-
nate on-chain to maximize the trustlessness of the protocol. A
longer TWAP sample (e.g. last 1 hour) will make the Cover
Pool less reactive to changes in price. Conversely, a shorter
TWAP sample (e.g. last 10 minutes) will make the Cover
Pool more reactive to price changes but better able to handle
short-term volatility.

In addition to creating a positive spread on the latest
TWAP price, the Cover Pool will also need to dynamically
adjust to the current market price, which is likely plus or minus
the current TWAP sample. To account for this adjustment,
Cover Pools will implement the concept of Gradual Dutch
Auctions to adjust the pool price each consecutive block.

Figure 1. Cover example auction curve

Each time the TWAP moves, a liquidity auction will
initiate and create a positive spread against the TWAP sample
equal to the tickSpacing. For example, if the ETH-DAI Cover
Pool in our example has sourced a TWAP 0.1% (10 basis
points) above 3000 DAI per ETH the ETH to DAI price will
start at 3000 + 0.2% and the DAI to ETH price will start at
3000 DAI per ETH. This is done to get slightly ahead of
the current market price so the pool can ensure those with
a liquidity position in the pool get filled. To be clear, this
positive TWAP spread does not alter the price at which the
Cover LP Position gets filled but rather slightly speeds up the
liquidity unlocking to increase the likelihood of user liquidity
getting filled.

When liquidity is unlocked by the TWAP, it is unlikely
this TWAP will fit the natural market price without any adjust-
ment. To account for this delta, Cover Pools will implement
the concept of Gradual Dutch Auctions to increase or de-
crease the pool price as needed each consecutive block a tick
or set of ticks has its liquidity auctioned off. Increases in pool
price will happen over time while decreases in pool price will
occur as a result of slippage from incoming swaps against the
CoverPool.

2. Implementation Details
Directional liquidity relies on a time-keeping mech-

anism to tell liquidity providers the price tick closest to fill
completion, which we will refer to as the Claim Tick, con-
taining any other data needed to fulfill the successful removal
of liquidity from the smart contract. Given the Claim Tick is
known and verified as correct (i.e. it has seen some update
since the user created their Position), x ∗ y = k math can be
used to determine the amount a Position should receive of
both token0 and token1.

The next tick in progression after the ClaimTick in
question ought to not have an epochLast less than or equal to
that of the liquidity position’s stamped epochLast. Otherwise,
the user will have claimed from the wrong tick and the smart
contracts should revert the transaction or continue naively
cycling to find the correct ClaimTick.

This simple mechanism of liquidity position tracking
persists throughout, however, there are a variety of special
cases to handle. Where the pool price is at the time of mint,
collect, or burn will mean a different approach to updating
liquidity values at Ticklower and Tickupper for the Position. It is
important to note that Cover Pools and Limit Pools have com-
pletely separate mechanics outside of the similarities outlined
in this section.

2.1 Limit Pool Contracts
[Coming in v1.1.0]

2.2 Cover Pool Contracts
When first launching a Cover Pool, we must first

ensure that the Range Pool we are referencing has a suffi-
cient TWAP sample length for any user minting a Cover LP
Position. If our pool uses a TWAP sample length of 10 min-
utes, we must ensure there is 1 minute’s worth of data currently
available.

Once this check passes, we can initialize the pool and
allow users to start adding liquidity. By initializing the pool,
Tickmin and Tickmax, the minimum and maximum price ticks,
are created in addition to a Ticklatest , a Tick representing the
current TWAP sample.

To prevent the state of any liquidity position from
being fragmented, we must not allow users to add liquidity on
both sides of the current TWAP. For LPs seeking to provide
token1 in exchange for token0, they must provide liquidity
at a price greater than the current TWAP, assuming the pool
price is represented as

pricepool =
token1 reserves
token0 reserves

Likewise, LPs seeking to provide token1 in exchange for
token0 must provide liquidity at a price lesser than the current
TWAP. Users seeking to exchange at a more favorable price
than the current TWAP should instead use a Limit Position.

Having discrete liquidity curves means having sep-
arate liquidity data for each swap direction. We will refer

https://www.paradigm.xyz/2022/04/gda
https://www.paradigm.xyz/2022/04/gda
https://www.paradigm.xyz/2022/04/gda

Poolshark — 4/5

to this distinction as pool0 and pool1, for which pool0 will
contain token0 and pool1 will contain token1. Position and
Tick data will also have distinct contract storage to track the
activity of each pool and apply exactly-once liquidity position
fills.

2.2.1 Position Updates
Cover introduces a brand new concept of amountIn∆

and amountOut∆. These values represent filled amounts
and unfilled amounts respectively for an auction or auctions.
amountIn∆ represents the incoming token amounts to the
CoverPool, while amountOut∆ represents outgoing token
amounts being offered to traders.

Additionally we introduce the concept of amountIn∆max,
which is the max incoming token amount the liquidity provider(s)
expects over some range. In the same vein, amountOut∆max
is the max outgoing token amount the liquidity provider(s)
expect to be consumed. When the edge of a position range
is reached, we proportionally distribute amountIn∆ based on
the amountIn∆max- and amountOut∆max- present at that tick.

Upon minting an LP position in a Cover Pool, a +∆liquidity,
or positive liquidityDelta, is added to Tickstart , while con-
versely a −∆liquidity is added to Tickend . If the LP mints a
position for token1 to token0, the Tickstart will be at the lower
bound, and the Tickend will be at the upper bound. Vice versa
will be true if the LP is depositing token0 for token1.

Utilizing standard x∗ y = k math and virtual reserves,
we can calculate the amount of liquidity L that a Position
holds using the following formula[1]:

L =

√
(x+

L√
priceupper

)(y+L
√

pricelower)

where pricelower is strictly less than priceupper and L represents
the square root of k in the equation x∗ y = k.

If there isn’t already a Position that exists for a user
with a chosen Ticklower and Tickupper, liquidity will be added
to the respective ticks and the Position will have two values ini-
tialized, epochLast and claimPriceLast. The former tells us
at what E poch the position was created, while claimPriceLast
tells us up to what price the user has claimed their expected
Position token output.

If a Position already exists for a user with a chosen
Ticklower and Tickupper, the current Position must be updated
first before we can create the new Position. This is imple-
mented so the Position can be partially filled and then have
more liquidity deposited thereafter. Once the Position is up-
dated, it will be stored with a Ticklower representing what
remains if token1 was initially deposited into the Positon, or
Tickupper if token0 was initially deposited into the Position.

2.2.2 Tick Auctions
For a single constant Tick T , it is unlikely the current

TWAP will fully inform the pool of what is a competitive
market price. To remedy this, the concept of a TickAuction

is implemented to naturally fit the Cover Pool price to that of
other bidirectional liquidity pools.

For simplicity the initial version of Cover applies a
linearly increasing auction price starting at the price tick being
unlocked and improving tickSpread basis points. For exam-
ple, if the tickSpread is 20 basis points, the auction curve will
give a maximum of 20 basis points of price improvement. If
the auction is still not filled once that maximum is reached,
any remaining amount will be marked unfilled which increases
the amountOut∆ being rolled over to the next auction.

2.2.3 Price Tracking
Price is tracked using an on-chain time-weighted aver-

age price oracle as determined by the user launching the pool.

Each time the auctionLength or
3
4

twapLength is passed,
whichever is lesser, we will sync the state of each price tick
between the previous TWAP tick and the new TWAP tick,
progressing the ClaimTick for liquidity providers in-range.
Curve math can then be used to determine how much each of
token0 and token0 the Position is owed. This is accomplished
by checking claimPriceLast, measuring the amountIn∆max
and amountOut∆max covered in this latest position update,
and then granting the proper amountIn∆ and amountOut∆
present at the tick.

Once the ”syncing” process is carried out, a new
StashTick will be initialized for any range that is partially
crossed. This StashTick will contain any ∆ amounts needed
for users to exit their CoverPosition. The price for pool1
will start at a positive spread of tickSpacing in favor of the
trader, while the price for pool0 will do the same relative to
the newLatestTick. This creates the potential for the liquidity
unlock to get slightly ahead of the TWAP and thus increase
the chances of successfully filling a given auction.

2.2.4 Delta Math
∆ amounts are aggregated across auctions onto either a

StashTick for within a position range or a FinalTick for when
a position end boundary is crossed. Separate ∆max values
will be kept for 1) uncrossed position boundaries or ∆max-
values 2) crossed position boundaries ∆max and 3) stashed tick
boundaries or ∆maxstashed.

The ∆ values for a given Stash Tick can be determined
via the following equation:

∆ stashed = ∆ ∗ ∆maxstashed
∆maxstashed +∆max f inal

The ∆ values for a given Final Tick can be determined
via the following equation:

∆ f inal = ∆ ∗ ∆max f inal
∆maxstashed +∆max f inal

Poolshark — 5/5

Acknowledgments

Major thanks to all the wonderful people I have met at each
and every Ethereum conference. Without your inspiration
and dedication to the space, this wouldn’t have been possible.
Together we can build a brighter future.

Big thanks to 0xnexusflip for being a constant sounding
board and equal thanks to everyone on my team who believed
in me.

Shouts out to kassandra.eth for being my initial gateway into
the concept of crossing price ticks and managing liquidity.

Big thanks to Geoff Hamilton from Variant for pushing me to
talk to other protocols more and receive genuine feedback.

Shouts out to Dan Ugolino for giving me the conviction
bidirectional liquidity would not work for decentralized
options protocols.

Big thanks to Zach Hamm for being a constant advocate for
creating better open and permissionless financial tooling for
everyone.

References
[1] Hayden Adams, Noah Zinsmeister, Moody Salem, River

Keefer, and Dan Robinson. 2021. Uniswap v3 Core. Re-
trieved Jan 10, 2023, from https://uniswap.org/whitepaper-
v3.pdf

[2] Frankie, Dan Robinson, Dave White, and andy8052. 2022.
Gradual Dutch Auctions. Retrieved Jan 10, 2023, from
https://www.paradigm.xyz/2022/04/gda

	Introduction
	Motivation
	High-level overview
	Limit Pools
	Cover Pools

	Implementation Details
	Limit Pool Contracts
	Cover Pool Contracts
	Position Updates
	Tick Auctions
	Price Tracking
	Delta Math

	Acknowledgments
	References

